Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Free Radic Res ; 55(7): 745-756, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1258678

RESUMEN

It has been shown that the development of coronavirus infection (COVID-19), especially in severe cases, is accompanied by hypoxia as a result of several pathological processes: alveolar blood supply disorders, hemolysis, COVID-associated coagulopathy. Under these conditions, the level of reactive oxygen species is increased and it is more likely that free-radical damage to biomolecules is caused by the process of free-radical fragmentation than oxidation. In contrast to the oxidation process, free-radical fragmentation reactions are more effectively inhibited by oxidizing agents than reducing agents. Therefore, the use of substances possessing both reducing and oxidizing properties, such as natural and synthetic quinones, bioflavonoids, curcuminoids, should reduce the probability of biomolecule destruction by oxidation as well as free-radical fragmentation processes.HighlightsCOVID-19 is accompanied by the iron release from the heme and «silent¼ hypoxiaROS initiate fragmentation reactions of biomolecules under conditions of hypoxiaBlocking of fragmentation process by oxidizers may lead to mitigation of COVID-19.


Asunto(s)
COVID-19/metabolismo , Radicales Libres/metabolismo , SARS-CoV-2/metabolismo , COVID-19/patología , COVID-19/virología , Radicales Libres/efectos adversos , Hemo/metabolismo , Humanos , Hierro/metabolismo , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA